Astronomical Applications Department, U.S. Naval Observatory Precession Maple  Page 9
 
 + 
(
)
-  + 
1
t
(
)
cos
(
)
 + 
1
t
t
( )
cos
K
y
I
xy
 + 
 - 
,
 - 
 + 
 + 
2
t
2
(
)
cos
t
(
)
sin
t
2
t
2
K
z
I
xy
(
)
-  + 
1
(
)
latex
,
SymTop
1
"d:/dynamics/precession/SymTop1.tex" ;
(
)
latex
,
SymTop
2
"d:/dynamics/precession/SymTop2.tex" ;
(
)
latex
,
SymTop
3
"d:/dynamics/precession/SymTop3.tex"
Conversion to a System of First-Order ODEs
We may write the equations of motion as a system of first-order differential equations.
 := 
subslist
,
,
 = 
t
 
 = 
t
 
 = 
t
 
(
)
subs
,
subslist SymTop
solve
,
{
}
(
)
op %
{
}
,
,
t
 
t
 
t
(
)
collect
,
,
% [
]
,
,
,
I
xy
(
)
sin
 
factor
 = 
t
 + 
 + 
(
)
-  + 
1
 
2
(
)
cos
 
(
)
sin
-
 + 
K
y
( )
sin
( )
cos
K
x
I
xy
,
 = 
t
 + 
(
)
 - 
(
)
 - 
1
 
(
)
cos
(
)
 + 
1
 
(
)
sin
 + 
( )
cos
K
y
K
x
( )
sin
(
)
sin
I
xy
t
 = 
,
-
 + 
(
)
sin
 + 
(
)
-  + 
1
(
)
cos
 
(
)
 + 
1
 
(
)
sin
-
 - 
K
z
-  + 
1
(
)
 + 
( )
cos
K
y
K
x
( )
sin
(
)
cos
(
)
sin
I
xy
 + 
 := 
foo
%
select
,
,
has foo
t
(
)
collect
,
,
(
)
op %
(
)
sin
[
]
,
,
I
xy
factor
 := 
foo
union
(
)
minus
foo
%%
{
}
%
Page 9