Astronomical Applications Department, U.S. Naval Observatory Precession Maple  Page 39
 
Y
(
)
cos
t
( )
cos
Y
(
)
sin
( )
sin
t
X
(
)
cos
t
( )
sin
 - 
 + 
 + 
X
(
)
sin
( )
cos
t
 + 
G (
)
 + 
X
( )
cos
Y
( )
sin
(
)
cos
I
xy
 - 
(
)
 - 
 + 
(
)
cos
 
Z
Y
(
)
sin
( )
cos
X
(
)
sin
( )
sin
G
-
 + 
X
( )
sin
t
Y
( )
cos
t
(
)
cos
I
xy
 + 
(
)
 - 
 + 
(
)
cos
 
Z
Y
(
)
sin
( )
cos
X
(
)
sin
( )
sin
G (
)
 + 
X
( )
cos
Y
( )
sin
(
)
sin
t
I
xy
Substitute for 
t
, 
t
, and 
t
 using the original equations of motion.  Then, assume 
 is large and the pressure terms (i.e., 
(
)
G
, , ,
,
,
a b h A
C
A
T
) are small.  We find the resulting 
second-order differential equations,
subsODEs
,
ode odesubs
proc(
)
 := 
local
;
,
, ,
,
q Lq u Lu eqn
 := 
eqn
(
)
copy ode ;
not (
)
 and 
(
)
isdiff eqn
 < 
1
(
)
difforder eqn
q
eqn
for
in
do
if
then
 := 
Lq
(
)
location
,
eqn q ;
 and 
( )
isdiff q
 = 
( )
difforder q
1
 := 
q
(
)
subs
,
odesubs q
if
then
 and 
 < 
1
( )
nops q
not 
( )
isdiff u
 := 
q
(
)
procname
,
q odesubs
elif
then
fi;
 := 
eqn
(
)
subsop
,
 = 
Lq
q eqn
od
fi;
(
)
eval eqn
end
Check:
for
to
do
od
ii
3
(
)
factor
 - 
(
)
subs
,
odesubs
(
)
rhs eqs2
ii
(
)
subsODEs
,
(
)
rhs eqs2
ii
odesubs
0
0
0
(
)
subsODEs
,
eqs2 odesubs
Page 39