Astronomical Applications Department, U.S. Naval Observatory Precession Maple Page 19
=
dF
parallel
dF
parallel
+
P
P
P
P
( )
cos
0
0
1
P
( )
sin
For
dF
perp
, we have
=
dF
perp
dF
perp
0
0
1
. Therefore,
=
(
)
mat
,
,
dF
dF
dF
(
)
evalm
+
dFpp
2
(
)
rhs %%
dFpp
1
(
)
rhs %
=
dF
dF
dF
dS
( )
cos
(
)
-
1
A
C
P
dS
( )
cos
(
)
-
1
A
C
P
-
dS
( )
cos
(
)
-
1
A
C
(
)
+
P
P
( )
cos
P dS
( )
cos
2
(
)
+
1
A
C
The component perpendicular to the surface simplifies:
factormat
::
M anything
proc(
)
:=
local
;
,
,
, , ,
S N Q r c k
(
)
type
,
M {
}
,
,
,
,
`=` `+` `*` list set
(
)
RETURN
(
)
map
,
,
procname M
[
]
args
..
2
nargs
if
then
(
)
type
,
M array
elif
then
:=
S
{ };
(
)
type
,
M vector
for to
do
od
r
(
)
size M
:=
S
union
S
{
}
[ ]
M r
if
then
for to
do
od
r
(
)
rows M
for
to
do
od
c
(
)
cols M
:=
S
union
S
{
}
[
]
M ,
r c
else
fi;
:=
S
minus
S
{ }
0 ;
:=
S
(
)
map
,
factor S ;
:=
Q
{
}
(
)
op
[ ]
S 1
;
for
from
to
do
od
k
2
( )
nops S
:=
Q
intersect
Q
{
}
(
)
op
[ ]
S k
;
:=
Q
(
)
convert
,
minus
Q
{
}
-
1
`*` ;
:=
N
(
)
copy M ;
:=
N
(
)
map
,
,
(
)
,
x y
/
x y N Q ;
<
1
nargs
if
then
;
:=
N
(
)
map
,
,
[ ]
args 2
N
[
]
args
..
3
nargs
:=
Q
(
)
map
,
,
[ ]
args 2
Q
[
]
args
..
3
nargs
fi;
Q
(
)
eval N
M
else
fi
end
(
)
factormat
,
,
,
(
)
subs
,
,
,
=
P
P
=
P
P
=
P
P %%
collect [
]
,
dS cos
factor
Page 19