I. Design
Issues
A. numerical integration scheme
1. object-oriented
design
2. Integrable objects have
knowledge of dynamical en-
vironment as well as the
ability to dynamically
evolve in that environment.
B. exception
handling
1. all exceptions fully recover-
able
2. procedure stack traceback
C. robust parameter estimation
1. Singular Value Decomposi-
tion (
SVD
)
2. use a mature package from
elsewhere
D. graphical user interface
E. reduction of observations
F. individual class design and test-
ing
II. Science Issues and Projects to Con-
sider
A. asteroids
1. masses from orbital interac-
tions
2. provide ephemerides (serv-
ices to the community)
3. cumulative effects on plane-
tary motions
a. Asteroids are the larg-
est source of "noise" in
the orbits of Mars and
the Earth-Moon
system.
B. lunar
motion
1. chaotic
dynamics
a. predictions from nu-
merical models
b. comparisons with
LLR
data
2. radiation
pressure
3. resonant interaction be-
tween tidal and
GR
terms
4. lunar
librations
C. Nordtvedt h parameter (anoma-
lous gravitational field energy
effects -- i.e., a difference be-
tween gravitational and inertial
mass proportional to the gravita-
tional binding energy of a body)
D.
GR
precession
1. lunar
orbit
2. Earth's
spin
E. bounds on time variation of the
gravitational constant
F. millisecond
pulsars
1. derive Earth orbit
G. bounds on dark matter in the so-
lar system?
H. planetary
satellites?
1. centroiding vs. satellite-
derived center of mass
I. other
science?
III. Documentation
A. code
1. source
documentation
model
2. interface (user manual)
B. algorithms
C. physics
1.
GR
and partial derivatives
2. Earth-Moon tidal interac-
tions
D. parameter estimation and error
and correlation analysis
E. numerical integration design
F. reduction of observations
MURISON: MODELING PLANETARY MOTIONS
12 of 20